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Termites host diverse communities of gut microbes, including many bac-
terial lineages only found in this habitat. The bacteria endemic to termite
guts are transmitted via two routes: a vertical route from parent colonies
to daughter colonies and a horizontal route between colonies sometimes
belonging to different termite species. The relative importance of both
transmission routes in shaping the gut microbiota of termites remains
unknown. Using bacterial marker genes derived from the gut metagenomes
of 197 termites and one Cryptocercus cockroach, we show that bacteria ende-
mic to termite guts are mostly transferred vertically. We identified 18
lineages of gut bacteria showing cophylogenetic patterns with termites
over tens of millions of years. Horizontal transfer rates estimated for 16
bacterial lineages were within the range of those estimated for 15 mitochondrial
genes, suggesting that horizontal transfers are uncommon and vertical transfers
are the dominant transmission route in these lineages. Some of these associ-
ations probably date back more than 150 million years and are an order of
magnitude older than the cophylogenetic patterns between mammalian hosts
and their gut bacteria. Our results suggest that termites have cospeciated
with their gut bacteria since first appearing in the geological record.
1. Introduction
Symbiotic associations with bacteria are pervasive across the animal tree of life
[1]. Some of these associations involve partners that have continuously and reci-
procally adapted to each other over extended evolutionary time scales, a
phenomenon referred to as coevolution [2]. The coevolution between bacteria
and their hosts is sometimes coupled with mechanisms of vertical transmission
leading to cospeciation and cophylogenetic patterns, whereby the phylogenetic
trees of both symbiotic partners show congruence in terms of topology and
timing [3,4]. For example, many insects, such as aphids, cockroaches or white-
flies (e.g. [5–7]), and many marine invertebrates, such as vesicomyid clams or
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catenulid flatworms (e.g. [8,9]), harbour intracellular bacterial
endosymbionts with phylogenetic trees closely matching that
of their hosts. The congruence between host and symbiont
phylogenetic trees reflects the strict vertical transmission of
intracellular endosymbionts from mother to eggs or embryos
[10,11], which sometimes takes place over several hundred
million years [5].

In contrast with maternally inherited intracellular endo-
symbionts, there are no clear examples of gut bacteria being
vertically transmitted on hundred-million-year time scales.
Cophylogenetic patterns between gut bacteria and their
hosts have been identified primarily in obligate symbioses
with highly specialized modes of symbiont transmission,
such as the nutritional symbiont Candidatus Ishikawaella
capsulata of plataspid stinkbugs [12] and the pectinolytic
Candidatus Stammera of cassidinine leaf beetles [13]. The rarity
of cophylogenetic patterns between gut bacteria and their host
may be linked to the difficulty of establishing stable vertical
transmission routes, especially in species with limited social
interactions. In social insects, such as bees, ants and termites,
nest-mates experience frequent social contacts and often
exchange gut fluid through trophallaxis, a behaviour providing
a stable route of gut bacterial transmission across generations
[11]. In consequence, some social insects, such as the corbiculate
bees, present cophylogenetic patterns with their gut bacteria
[14,15], indicating that sociality may lead to the coevolution of
gut bacteria with their host at geological time scales.

Cophylogenetic analyses have rarely been performed for
animals with complex bacterial gut microbiota, perhaps
because many studies have relied upon 16S rRNA sequences,
a marker that diverges at about 1% per 50 Myr [16]. Because of
its slow rate of evolution, the 16S rRNA gene does not provide
the taxonomic resolution required to resolve cophylogenetic pat-
terns. Studies of the gut microbiota of humans and great apes
successfully used protein-coding sequences to identify cophylo-
genetic patterns between several bacterial lineages and their
mammalian hosts, suggesting that both partners have coevolved
over thepast 15 Myr [17,18]. This coevolutionmayhaveoccurred
because of the limited ability of symbionts to survive outside
their host as they lost genes involved in key metabolic functions
and developed specific oxygen and temperature requirements
[18–20]. Here, we used protein-coding marker genes obtained
from termite gut metagenomes to analyse the cophylogenetic
patterns between termites and their gut bacteria.

Termites host unique gut microbial communities composed
of bacteria, archaea and cellulolytic flagellates [21]. The gut fla-
gellates have cospeciated with their hosts since their acquisition
by the common ancestor of termites and their sister group, the
wood-feeding roach Cryptocercus [22–24]. Numerous bacterial
lineages occur ubiquitously in all termite species investigated
but have never been found outside of termite guts [25,26].
These endemic bacteria are believed to be acquired via two
transmission routes: vertical and horizontal [26]. The vertical
route involves both colony founders (the king and the queen)
and nest-mates that provide each other gut fluid through tro-
phallaxis, ensuring the transmission of gut bacteria among
family members and, ultimately, from parent colonies to
daughter colonies [27]. The horizontal route involves the trans-
fer of bacteria between unrelated colonies sometimes belonging
to different termite species, or the acquisition of environmental
bacteria. The relative importance of the vertical and horizontal
transmission routes in shaping the gut microbiota of termites
remains unknown.
In this study, we searched for evidence of cophylogeny
between termites and their gut bacteria.We compared two phy-
logenetic trees of termites reconstructed using mitochondrial
genomes and ultraconserved elements (UCEs), respectively,
with phylogenetic trees of gut bacteria reconstructed using 10
independent universally occurring protein-coding marker
genes [28]. Our study reveals that horizontal transfers between
termite speciesmay not be needed to explain the cophylogenetic
patterns between termites and some of their endemic gut bac-
teria. Our results suggest that some bacterial lineages found in
termite guts have been vertically transmitted over the past
150 Myr of termite evolution [29,30].
2. Material and methods
(a) Sample collection and metagenome analyses
We used the gut metagenomes of 141 termite samples and one
sample of the cockroach Cryptocercus kyebangensis sequenced by
Arora et al. [31] (electronic supplementary material, table S1).
In addition, we sequenced 56 termite gut metagenomes for this
study. All samples were preserved in RNA-later, stored for up to
several weeks at room temperature, and subsequently stored at
−80°C until DNA extraction. We extracted and sequenced DNA
and assembled the metagenomes as described in Arora et al. [31].

Ten single-copy protein-coding marker genes were extracted
from the assemblies using the mOTU software [28,32,33]. Gen-
omes and metagenome-assembled genomes available in the
Genome Taxonomy Database GTDB v. 95 [34] were downloaded,
and the same 10 single-copy marker genes were extracted as
described above.

The taxonomic annotation of the 10 marker genes extracted
from termite gut metagenome assemblies was performed using
the lowest common ancestor algorithm implemented in DIA-
MOND BLASTP [35] with e-value≤ 1e-24 as a threshold. The
BLASTP search was performed against the GTDB database v.95
[34]. For downloadedgenomes,weused the taxonomic annotation
available from GTDB v. 95. The marker gene sequences from ter-
mite gut metagenomes and the GTDB database were analysed
separately for every phylum. We reconstructed the phylogenetic
tree of every phylum comprising more than 10 sequences.
(b) Reconstruction of marker gene phylogenetic trees
Sequences shorter than half the mean length of the marker gene
were removed to improve the accuracy of phylogenetic recon-
structions [36,37]. Protein sequences were aligned using
MAFFT v. 7.305 with the -auto option [38]. Protein alignments
were back-translated into their corresponding nucleotide align-
ments using PAL2NAL [39]. Aligned nucleotide sequences
were converted into purines (R) and pyrimidines (Y) using
BMGE v. 1.12 [40] to account for the variability of GC content
observed across bacterial sequences. Maximum-likelihood (ML)
phylogenetic trees were generated using these RY-recoded
sequence alignments with IQ-TREE v. 1.6.12 [41]. We used the
GTR2 +G + I model of binary state substitution. Node supports
were assessed using the ultrafast bootstrap method [42] with
the command -bb 2000 for 2000 bootstrap replicates. The phylo-
genetic trees of every phylum were rooted using outgroup taxa
selected from the bacterial tree of life [34,43]. The phylogenetic
trees of archaeal and bacterial clades composed of sequences
found exclusively in termite guts and represented by more
than 10 termite species were extracted from the phylogenetic
trees of each phylum. We refer to these trees, including sequences
of termite gut bacteria exclusively, as termite-specific clades
(TSCs). This procedure was followed for each marker gene.
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(c) Phylogenetic reconstruction of termites using
mitochondrial genomes

We reconstructed the phylogenetic tree of termites using mitochon-
drial genome sequences. Termite mitochondrial contigs longer
than 5000 bp and more than 90% identical to the previously pub-
lished whole mitochondrial genomes of termites [29,44–49] were
identified using BLAST searches [50]. Complete or near-complete
mitochondrial genomes were annotated using the MITOS web
server [51]. We aligned the 13 protein-coding genes, two ribosomal
RNA genes and 22 transfer RNA genes with MAFFT v. 7.305 [38].
All gene alignments were concatenated, and the third codon
position of protein-coding genes was removed. The concatenated
alignment was divided into four partitions: one for the first
codon position of protein-coding genes, one for the second
codon position of protein-coding genes, one for the combined
transfer RNA genes and one for the combined ribosomal RNA
genes. We reconstructed a Bayesian phylogenetic tree using
BEAST v. 2.4.8 [52], following the approach described in Arora
et al. [31]. We used an uncorrelated lognormal relaxed clock as a
model of rate variation [53] and a birth–death process as a tree
prior [54]. We used the nine fossil calibrations used by Arora
et al. [31], which we implemented as exponential priors on node
times. Sphaerotermitinae and Macrotermitinae were constrained
to form a monophyletic group, as supported by phylogenetic
trees based on transcriptomes and UCEs [30,55]. Similar constraints
were applied to non-Stylotermitidae Neoisoptera, which were
constrained to be monophyletic [31].
(d) Phylogenetic reconstruction of termites using
ultraconserved elements

We extracted from each gut metagenome assembly termite
UCEs, and their flanking 200 bp at both 50 and 30 ends, using
PHYLUCE v. 1.6.6 [56] and LASTZ [57]. We used the termite-
specific bait set targeting the 50 616 UCE loci described in Helle-
mans et al. [55] and followed the procedure described therein.
The UCE dataset produced in this study (Contribution #3 to
the Termite UCE Database available at: https://github.com/
oist/TER-UCE-DB/) is available on the Dryad Digital Repository
(https://doi.org/10.5061/dryad.tmpg4f53w). Loci were aligned
with MAFFT [38], as implemented in phyluce_align_seqcap_align.
Alignments were trimmed internally using phyluce_align_get_g-
blocks_trimmed_alignments_from_untrimmed, which implements
Gblocks [58,59] with default parameters. UCE loci found in more
than 57% of termite gut metagenomes were extracted with phylu-
ce_align_get_only_loci_with_min_taxa. Of those, the 322 loci
matching, at least partly, singly annotated exons from the draft
genome of Zootermopsis nevadensis [60] were used for downstream
analyses. The final supermatrix, composed of 322 UCE alignments,
was obtained with phyluce_align_format_nexus_files_for_raxml.
We carried out ML tree reconstruction on the supermatrix using
IQ-TREE v. 1.6.12 with a GTR+G+ I model of nucleotide substi-
tution and 1000 ultrafast bootstrap replicates to assess branch
supports [41,61].
(e) Matching termite-specific archaeal and bacterial
clades across marker gene trees

The phylogenetic trees reconstructed with the marker gene
coding for COG0552 (ftsY) were used as references. We
attempted to link every TSC found in the phylogenetic trees
reconstructed with COG0552 with their counterparts found in
the phylogenetic trees reconstructed with the other nine marker
genes. To do so, we searched the 198 gut metagenomes for con-
tigs encompassing at least two of the 10 marker genes. The
position of each marker gene sequence in their respective
phylogenetic trees was used to match TSCs across marker gene
trees. We also used the 10 marker genes of the termite gut
bacterial genomes found in the GTDB database. Of the
194425 genomes downloaded from the GTDB database, 37
were associated with termite guts.

( f ) Cophylogenetic analyses
We used three approaches to test for cophylogeny between ter-
mites and TSCs. For the first approach, we used the R package
PACo (Procrustean Approach to Cophylogeny) [62], which
implements Procrustean superimposition to estimate the cophylo-
genetic signal between two phylogenies. The host and symbiont
phylogenetic trees were converted into distance matrices using
the cophenetic() function of the vegan R package [63]. The software
was run using the backtracking method of randomization that con-
serves the overall degree of interactions between the two trees [64].
The second approach was the generalized Robinson–Foulds (RF)
metric [65]. This method was implemented using the ClusteringIn-
foDistance() function of the TreeDist R package [65]. For the third
approach, the host and symbiont phylogenetic trees were matched
to find an optimal one-to-one map between branches using the
method described by Nye et al. [66] and implemented in the Nye-
Similarity() function of the TreeDist R package [65]. Because the
two methods implemented in the TreeDist R package do not
allow multiple symbiont tips in one host, each host tip was split
into a number of tips of zero branch length equal to the number
of archaeal and bacterial symbionts present in the metagenome
corresponding to that given tip [67,68]. The strength of the cophy-
logenetic signal was computed from each cophylogenetic
algorithm. Congruence between the host and symbiont trees was
determined using 10 000 random permutations. We ran the cophy-
logenetic analyses on the phylogenetic trees reconstructed with
mitochondrial genomes and UCEs.

We estimated the number of host transfer events for each TSC
using the GeneRax software [69]. GeneRax is a ML-based
method that reconciles the microbial gene tree with the host
tree. It estimates rates of horizontal transfers within TSCs, the
probability that a microbe is transferred from one host to a
random host not ancestral to the donor host. We carried out
each cophylogenetic analysis twice, once with the termite phylo-
genetic tree reconstructed with mitochondrial genomes and once
with the tree reconstructed with UCEs. We compared the rates of
transfers obtained for TSC trees with the rates of transfers calcu-
lated for the 13 protein-coding genes analysed without the third
codon position and the two rRNA mitochondrial genes. Because
mitochondrial genomes do not recombine, all mitochondrial
genes have an identical evolutionary history and experienced
no transfer. The positive rates of transfers found for mitochon-
drial gene trees reflect the uncertainties of phylogenetic
reconstructions and provide a baseline for the estimated rates
of horizontal transfer values in the absence of horizontal transfer.
We consider that the evolutionary history of TSCs is predomi-
nantly explained by vertical transfers when their rates of
horizontal transfers fall within the range of that found for
mitochondrial genes.
3. Results and discussion
The sequences were derived from 197 termite gut metagen-
omes and one Cryptocercus metagenome combined with
sequences from the GTDB database [34]. Our dataset comprises
representatives of all termite families, spanning approximately
150 Myr of evolution, and the main lineages of Termitidae,
which arose around 50 Ma [29,30]. It also includes samples of
30 species of Microcerotermes, a pantropical termitid genus
that appeared around 20 Ma [45]. Therefore, our dataset
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Figure 1. Results of the cophylogenetic analyses performed on the marker gene COG0552 of 27 termite-specific archaeal and bacterial clades (TSCs). The cophy-
logenetic analyses were performed with three different methods: PACo, the generalized RF metric, and the tree alignment algorithm described by Nye et al. [66].
The transfer rates were estimated using the ML method implemented in the GeneRax software.
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captured both the intrageneric variations and ancient
divergences of the termite hosts.

We reconstructed separate ML phylogenies for each
marker gene and each bacterial and archaeal phylum. Then,
we searched each tree for TSC composed exclusively of
sequences associated with termites and represented in at
least 10 termite species. We found between 8 and 34 TSCs
per marker gene and selected ftsY (COG0552), which was
represented by 2299 sequences forming 27 TSCs, as a refer-
ence marker gene. The 27 TSCs of COG0552 belonged to
nine bacterial and two archaeal phyla. We examined the
cophylogenetic signal between each TSC and its termite
host using the termite phylogenetic trees reconstructed with
mitochondrial and UCE data and three different methods:
PACo [62], the generalized RF metric [65], and the tree align-
ment algorithm described by Nye et al. [66]. The results of the
analyses performed on the two termite phylogenetic trees
were almost identical (electronic supplementary material,
table S2), indicating that our analyses were robust to the
type of data used to reconstruct the host phylogenetic tree.
We discuss the results obtained with the termite mitochon-
drial phylogenetic tree for simplicity. Eighteen of 27 TSCs
showed significant cophylogenetic signals with termites
with all three methods (figure 1). We then inferred TSCs
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Figure 2. Selected phylogenetic trees of termite-specific bacterial clades (TSCs) showing strong cophylogenetic signals with termites. The TSC phylogenetic trees
were reconstructed with IQtree using the RY-recoded DNA sequence alignments from the marker gene COG0552. Phylogenetic trees of (a) the Spirochaetota Brez-
nakiellaceae TSC26, (b) the Spirochaetota Breznakiellaceae TSC25, (c) the Fibrobacterota Fibromonas TSC11 and (d ) the Desulfobacterota Adiutrix TSC10. (e)
Phylogenetic tree of termites inferred from mitochondrial genomes. The diagrams below the phylogenetic trees indicate the results of the cophylogenetic analyses
and the estimation of the horizontal transfer rate. Scale bars represent substitutions per site.
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from the other nine marker genes and identified their corre-
spondence to the COG0552 marker gene-based TSCs based
on the physical linkage of marker genes on contigs (see
Material and methods for additional details). Cophylogenetic
analyses on corresponding TSCs from all marker genes
yielded similar results (electronic supplementary material,
table S2), indicating that the choice of reference marker
gene did not influence the outcome of our analyses.

The TSCs with the strongest cophylogenetic signals
included key components of the gut microbiota of termites.
For example, the families Ruminococcaceae (phylum Bacillota,
formerly Firmicutes) and Breznakiellaceae (phylum Spirochaetota),
respectively, made up 16.5% and 20.0% of the 16S rRNA gene
sequences found in a survey of 94 termite species [26]. Brezna-
kiellaceae generally have a fermentative metabolism and include
strains capable of reductive acetogenesis [70,71]. They have
been isolated from the guts of cockroaches, suggesting that
they were already present in the ancestor of termites and
their cockroach sister group, Cryptocercidae [71,72]. Therefore,
TSCs with essential functions and a long history of association
with termites show cophylogenetic signals.

In principle, the observed cophylogenetic signals between
TSCs and their termite hosts could be caused by two different
mechanisms: (i) vertical transmission of gut bacteria from
parent colonies to daughter colonies, which is caused by
the transmission of gut bacteria among family members
and results in the coevolution of symbionts and hosts; (ii) lim-
ited horizontal transfers of gut bacteria among the diverging
termite species due to geographical barriers, which would not
require vertical transfers and results in allopatric speciation
[3,4]. If vertical transfer were responsible for the cophylogenetic
signals, it should give rise to bacterial lineages associated exclu-
sively with specific termite clades and not shared with other
sympatric termites. We indeed found such termite clade-
specific lineages (TCSL) within many TSCs (figure 2). For
example, we found several TCSLs belonging to the family
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Breznakiellaceae, the genus Fibromonas (phylum Fibrobacterota)
and the genus Adiutrix (phylum Desulfobacterota) that were
associated exclusively with the densely sampled genus Micro-
cerotermes (figure 2a–d). These TCSLs were absent from the
guts of other termites, including many species that are sympa-
tric with Microcerotermes, demonstrating that some TCSLs are
endemic to the gut of specific termite genera, as previously
hypothesized based on smaller datasets [73]. They were
found in the guts of Microcerotermes species collected across
four continents and six biogeographic realms, indicating that
Microcerotermes dispersed worldwide with their specific gut
bacteria. We also found TCSLs associated with termite clades
sampled less intensively. For example, a group of Nasutitermi-
tinae that shares a common ancestor approximately 25 Mya
and has been sampled across multiple continents hosted sev-
eral TCSLs belonging to the family Breznakiellaceae and the
genus Adiutrix (figure 2a,b,d). These examples of the absence
of horizontal transfer of bacteria between sympatric termites
belonging to different clades indicate that allopatry is not
required to maintain the association between termite clades
and their symbiotic bacteria. Therefore, even if allopatric
speciation of termites and TCSLs likely occurred, TCSLs
are transmitted vertically from parent colonies to daughter
colonies and possibly horizontally among related termite
species forming a clade.

We next estimated the number of host transfer events for
each TSC using the ML method implemented in the GeneRax
software [69]. The estimated rates of transfer varied between
0.12 and 0.60 for TSCs showing cophylogenetic signals with
termites (figure 3a). Note that the rates of transfer estimated
with the UCE-based termite phylogenetic tree were almost
identical, varying between 0.13 and 0.61 (electronic sup-
plementary material, table S2). Notably, 16 TSCs had rates
of transfer falling between 0.11 and 0.32, the range of rates
of transfer estimated for each of the 13 protein-coding and
two rRNA mitochondrial genes used in this study to build
the phylogenetic tree of termites (figure 3a). Mitochondrial
genes are expected to experience no transfer and have an
identical evolutionary history, providing a baseline for esti-
mated rates of transfer values obtained for genes expected
to experience no horizontal transfer. While these results do
not prove the absence of horizontal transfers, they suggest
that the cophylogenetic patterns observed between some
TSCs and termites may not involve any horizontal transfers.
Cophylogenetic patterns would be obfuscated by bacterial
extinction (or insufficient sequencing depth, from which it
cannot be distinguished) and speciation taking place within
non-speciating termite hosts [4].

Several TSCs, less speciose than Breznakiellaceae and Fibro-
monas, depicted patterns of cophylogeny across large parts of
the termite phylogenetic tree (figure 3). For example, the phy-
logenetic tree of the genus Adiutrix found in the termite sister
group Cryptocercidae, three families of termites, and across
Termitidae, was highly congruent with the phylogenetic
tree of termites (figure 3b). The phylogenetic tree of the
family Rhodocyclaceae (phylum Pseudomonadota, formerly Pro-
teobacteria) (figure 3c) is another example of a clade showing
significant cophylogenetic signal with termites. We interpret
these cophylogenetic patterns between termites and some
of their gut bacterial symbionts as evidence of coevolution
with vertical transmission taking place over several tens of
millions of years.
4. Conclusion
We identified the oldest known cophylogenetic patterns
between animals and their gut bacteria. They involve mul-
tiple bacterial lineages and their termite hosts and span
tens of millions of years—some may even trace back to the
first appearance of termites around 150 Ma. These findings
substantiate previous claims of coevolution between termites
and their gut microbiota [74] and provide concrete evidence
that proctodeal trophallaxis, a social behaviour in which
nest-mates exchange droplets of hindgut contents [27],
indeed serves as a stable vertical transmission route over
geological time scales.
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COG0552 marker genes (Newick format) are available on Figshare
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