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SUMMARY

Phylogenetic trees are typically reconstructed using conserved sequence alignments.'2 Other genomic ele-
ments, such as transposable elements (TEs), make up a large fraction of eukaryotic genomes?® but are ignored
for phylogenetic reconstruction, despite potentially containing phylogenetic information,*° which could be
used to resolve nodes that remain contentious. Here, we reconstructed accurate phylogenetic trees of 45 ter-
mites and two cockroaches using two types of characters derived from the TE landscape: (1) genome-wide
presence and absence of 37,966 TE families and (2) presence/absence data of 37,966 TE families in the flank-
ing regions of orthologous ultraconserved elements (UCEs), which was a proxy for TE insertions. The topol-
ogies of our TE-based phylogenetic trees were largely congruent with phylogenetic trees inferred from align-
ments of UCEs and single-copy orthologous genes, only differing for a few nodes variably reconstructed in
other phylogenetic analyses. Notably, trees based on genome-wide TE family composition were more accu-
rate than trees inferred from mitochondrial genome alignments, and trees based on TE family composition in
regions flanking UCEs achieved comparable accuracy with trees inferred from single-copy orthologous gene
alignments. Our results demonstrate that the TE landscape is phylogenetically informative, representing an
additional set of markers for robust phylogenetic reconstructions, with potential use to resolve ambiguous
nodes in the tree of life.

RESULTS AND DISCUSSION

Our understanding of the tree of life is largely based on phyloge-
netic trees reconstructed from alignments of conserved genetic
sequences, often derived from protein-coding genes.'* Modern
phylogenetic trees tend to be robust, as they are reconstructed
from alignments of thousands of sequences, allowing for the res-
olution of the relationships among many, but not all, lineages. Yet
some specific nodes remain difficult to resolve due to underlying
evolutionary processes, such as rapid speciation events leading
to incomplete lineage sorting® and the loss of phylogenetic signal
for deep divergences.” New characters other than substitutions
inferred from sequence alignments may be used to elucidate
ambiguous nodes in the tree of life. For example, the early branch-
ing in the animal tree was inferred using conserved gene synteny.®
The identification of new molecular markers is one avenue to
further improve future phylogenetic reconstructions.

Genes typically make up a small fraction of eukaryotic ge-
nomes, unlike transposable elements (TEs), which often

represent more than half of eukaryotic genomes.® TEs are ac-
quired vertically through parental inheritance or through horizon-
tal transfers, often across distantly related organisms.® Although
the rate of horizontal TE transfers between species has previ-
ously been qualified as “massive” for insects,'® TE landscapes
do contain phylogenetic information.® For example, TE insertions
in orthologous genomic regions have been used as phylogenetic
characters in a few lineages of vertebrates.*° Because the prob-
ability of insertion of closely related TEs in the same location is
negligible, TE insertions are homoplasy-free characters, theoret-
ically ideal for phylogenetic reconstruction.’”'? Furthermore,
most TE insertions are nearly neutral, ' and TE activity can intro-
duce numerous genetic variations in a short period of time,'*'®
which may allow the resolution of divergences that arose during
rapid speciation events.

While the use of TEs for phylogenetic reconstruction experi-
enced initial success, it has largely been abandoned, possibly
because the characterization of TE insertion events was origi-
nally arduous, each requiring efforts similar to the production
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Figure 1. TE family diversity across the ge-
nomes of 45 termites and two cockroach
outgroups

(A) Number of TE families assigned to each of the
main TE classes in the pan-genome of 47 species.
(B) Prevalence of TE families among the genomes
of the 47 species studied here, with each bar
representing the number of TE families found in a
given number of species (the sum of all the bars is
37,966, the number of TE families identified in this
study).
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of a DNA sequence containing hundreds of characters. How-
ever, genome sequencing and TE annotation have become
less challenging tasks due to improved sequencing methods
and genome assembly and annotation tools. Eukaryotic ge-
nomes often contain millions of TEs, each potentially represent-
ing independent characters for phylogenetic analyses. TE inser-
tions inferred from genomic data have occasionally been used to
build phylogenetic trees of closely related species,'® but it re-
mains unclear whether the TE landscape can be used to recon-
struct accurate phylogenetic trees at a larger timescale.

Here, we used whole-genome assemblies and improved TE
annotation methods to reconstruct accurate phylogenetic trees
of termites based on TEs. We used two types of characters
derived from the TE landscape: (1) genome-wide presence/
absence data of TE families and (2) presence/absence data of
TE families in the flanking regions of orthologous ultraconserved
elements (UCEs), a proxy for TE insertions. Termites represent
an ideal use-case lineage. First, termite phylogenies have previ-
ously been reconstructed using mitochondrial genomes,'”'®
transcriptomes,'® and UCEs,?%?" leaving only a few nodes unre-
solved and thereby providing a solid basis for comparison. Sec-
ond, whole-genome assemblies of 45 termite species represent-
ing 11 of the 13 families of termites and 12 of the 18 subfamilies
of Termitidae were recently generated by Liu et al.,>? allowing a
genome-level characterization of TEs for an insect lineage that
originated ~150 million years ago.'”"®

Phylogenetic trees inferred from TE family composition
are more accurate than trees inferred from
mitochondrial genome sequence alignments

We first characterized the TE landscapes of the 45 termites and 2
cockroach outgroups (Blatta orientalis and Cryptocercus meri-
dianus). We built one TE library for each genome individually us-
ing the de novo TE annotation pipeline EDTA?® and aggregated
all libraries into a pan-genome TE library using the software pan-
EDTA.2* Our pan-genome TE library contained a total of 37,966
sequences, each representing a TE family following the 80-80-80
criteria®® —two sequences belonged to the same TE family if over
80% of one sequence aligned to the other sequence with identity
and length above 80% and 80 bp, respectively. We used our
pan-genome TE library to annotate all genome assemblies and
retained both intact and fragmented TEs. The main TE classes
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included miniature inverted-repeat TEs
(MITEs), DNA transposons, long terminal
repeats (LTRs), and long and short inter-
spersed nuclear elements (LINEs and
SINEs) (Figure 1A). Many TE families were endemic to specific
termite clades. For example, many TE families were specific to
Termitidae and Neoisoptera, forming 2 peaks in the distribution
of TE family prevalence among termites at 24 and 32 species,
the number of species of Termitidae and Neoisoptera used in
this study (Figure 1B). These results show that the TE family
composition of termite genomes contains a phylogenetic signal
supporting monophyly of major termite clades.

Our first approach to inferring TE-based phylogenetic trees
relied upon the composition of TE families across the genomes
of 47 blattodean genomes. We inferred two maximum likelihood
trees from binary matrices that have the presence/absence of TE
families coded as 1/0. One tree was inferred using a substitution
model for binary data (TEcB), and the other tree was based on a
substitution model for morphological data (TEcM). Both trees
were largely congruent with the UCE-based phylogenetic tree
of Liu et al.,”® with a few exceptions (Figures 2A, S1H, and
S1l). In TEcM, (1) Hodotermopsidae was found sister to Stoloter-
mitidae, instead of sister to Archotermopsidae in the UCE-based
phylogeny; (2) Paraneotermes was found sister to other Kaloter-
mitidae, instead of Kalotermes in the UCE-based phylogeny and
previous mitogenome-based phylogenetic trees?; (3) Dolicho-
rhinotermes was sister to Prorhinotermes + Heterotermitidae +
Termitidae, instead of forming a monophyletic group with Glos-
sotermes in the UCE-based phylogeny; (4) Sphaerotermitinae
was sister to all other Termitidae subfamilies, while it re-
presented the sister group of Macrotermitinae in UCE- and
transcriptome-based phylogenies'®" and the sister group of
non-Macrotermitinae non-Foraminitermitinae Termitidae in mi-
togenome-based phylogenies'”"'%; and (5) the relationships
among subfamilies of Termitidae forming a clade sister to Apico-
termitinae, which were largely unresolved in previous sequence-
based phylogenetic trees,'®'%?" presented a unique branching
pattern, while the relationships among genera of Nasutitermiti-
nae and Syntermitinae + Microcerotermitinae were congruent
with the UCE-based tree. The topology of TEcB was similar to
that of TEcM, except for the relationships among genera of
Kalotermitidae, which differed from the UCE-based phylogeny
and previous mitogenome-based phylogenetic trees.>® Nota-
bly, incongruencies between TE-family-content-based and
sequence-based trees primarily affected nodes variably recon-
structed in previous phylogenetic analyses, while nodes that
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Figure 2. Comparisons between sequence-based and TE-based phylogenetic trees

Tanglegrams between a phylogenetic tree (left) based on the alignment of 27,610 ultraconserved elements (UCEs)** with (A) a tree inferred from presence/
absence data of 37,966 TE families reconstructed using a maximum likelihood model for morphological data and (B) a tree reconstructed using a maximum
likelihood model for binary data and inferred from TE insertion information, using presence/absence data of 37,966 TE families in the 100-bp region flanking

13,227 UCEs as a proxy.
See also Figure S1 and Table S1.

received strong support were generally retrieved with identical
topology.

To better characterize the accuracy of the two trees inferred
from TE family content, we reconstructed six phylogenetic trees
for comparison, including three trees inferred from 1,410 nuclear
single-copy orthologous genes (scHOGs) and three trees inferred
from the 13 mitochondrial protein-coding genes. The six trees
were reconstructed using protein sequence alignments and
DNA sequence alignments analyzed with and without third codon
positions (Figures S1B-S1G; Table S1). We calculated the
normalized Robinson-Foulds distance®’ (nRF) between each of
these eight trees and a reference tree based on 27,610 UCEs re-
constructed by Liu et al.,? which arguably is the closest approx-
imation of the actual species tree for this 47-species dataset
(Figure 3). The resulting UCE-nRF metric reflects the disimilarity
of each tree with the reference UCE tree, with values of 0 indi-
cating identical tree topologies. TEcM and TEcB had a UCE-
nRF of 0.205 and 0.273, respectively. These values were higher
than the UCE-nRF values obtained for trees inferred from 1,410
scHOGs (0.023 for the protein-based tree, 0.023 for the tree
based on nucleotide sequence with third codon positions
included, and 0.045 for the nucleotide-sequence-based tree
without third positions). However, the UCE-nRF values obtained
for the two trees inferred from TE family content were lower than
the UCE-nRF values obtained with three trees inferred from the
13 mitochondrial protein-coding genes (0.295 for the protein-

sequence-based tree and 0.341 and 0.319 for the DNA-
sequence-based tree with and without the third position, respec-
tively). This may be explained by the nuclear origin of both UCEs
and the TE family content, while mitochondrial genes are linked
and represent a single marker often experiencing introgression,
which leads to discordance between mitogenome trees and spe-
cies trees.”®?° Overall, these results support the genomic con-
tentin TE families as valid characters for phylogenetic tree recon-
struction, yielding trees with higher accuracy than trees inferred
from mitochondrial genomes (Figure 3).

Phylogenetic trees inferred from TE family composition
in the flanking regions of orthologous UCEs, a proxy for
TE insertions, have comparable accuracy to trees
inferred from thousands of nuclear sequence
alignments

Previous studies used TE insertion events instead of the TE fam-
ily composition to extract phylogenetic information from the TE
landscape.*®> We designed a new approach to identify a large
number of orthologous TE insertions across the 47 blattodean
genome set. We used presence/absence data of TE families
in UCE flanking regions as a set of characters for phylogenetic
tree reconstruction. Our approach is based on the premise
that TEs belonging to the same family and located near ortholo-
gous genomic elements, such as UCEs, are themselves
orthologous. We inferred 16 maximum likelihood trees using
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Figure 3. Comparisons between a reference phylogenetic tree based on the alignment of 27,610 UCEs and 24 trees reconstructed in this

study

The values on the y axis are the normalized Robinson-Foulds distances between the reference phylogenetic tree®” and 24 trees reconstructed in this study (UCE-
nRF). The 24 trees included three trees based on 13 mitochondrial protein-coding genes and inferred from protein alignments (mtP) and nucleotide alignments
with (mtC3+) and without (mtC3—) third codon positions; three trees based on 1,410 nuclear scHOGs and inferred from protein alignments (scP) and nucleotide
alignments with (scC3+) and without (scC3-) third codon positions; two trees inferred from presence/absence data of 37,966 TE families using models for binary
(TEcB) and morphological data (TEcM); eight trees inferred from presence/absence data of 37,966 TE families in a UCE flanking region of 50 bp (TEi50B), 100 bp
(TEi100B), 200 bp (TEi200B), 500 bp (TEi500B), 1,000 bp (TEi1kB), 2,000 bp (TEi2kB), 3,000 bp (TEi3kB), and 4,000 bp (TEi4kB) using a model for binary data; and
eight trees inferred from presence/absence data of 37,966 TE families in a UCE flanking region of 50 bp (TEi50M), 100 bp (TEi100M), 200 bp (TEi200M), 500 bp
(TEi500M), 1,000 bp (TEi1kM), 2,000 bp (TEi2kM), 3,000 bp (TEi3kM), and 4,000 bp (TEi4kM) using a model for morphological data.

See also Figure S2.

presence/absence data of 37,966 TE families in UCE flanking re-
gions. We used two models for binary and morphological data
and eight UCE flanking region lengths: 50, 100, 200, 500,
1,000, 2,000, 3,000, and 4,000 bp (Figures S1J-S1Y;
Table S1). As a first step to evaluate the 16 trees, we calculated
the UCE-nRF metric for each tree. The UCE-nRF values obtained
for trees inferred with the model for morphological data varied
between 0.295 and 0.364, which are within the range of values
obtained for the trees inferred from the 13 mitochondrial pro-
tein-coding genes (Figure 3). The UCE-nRF values of the trees in-
ferred with the model for binary data were variable, ranging from
0.068 to 0.318, with values decreasing as the UCE flanking re-
gion length decreases, possibly reflecting the effect of recombi-
nation, which invalidates the assumption of orthology among
TEs located farther away from orthologous UCE loci. Notably,
the two trees reconstructed with a UCE flanking region length
of 50 bp (TEi50B) and 100 bp (TEi100B) and the binary model
were topologically identical and had a UCE-nRF value of
0.068, which is close to the values obtained with trees based
on 1,410 nuclear scHOGs (Figure 3). Therefore, TE insertion
events in the neighborhood of UCEs can be used to produce
phylogenetic trees comparable to state-of-the-art phylogenies
reconstructed from thousands of nuclear loci.

The topology of TEi50B and TEi100B was similar to the UCE-
based phylogenetic tree of Liu et al.,>” with three exceptions
(Figure 2B): (1) Cryptocercus and Mastotermes formed a mono-
phyletic group sister to other termites, while Cryptocercus was
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consistently sister to Mastotermes + other termites in previous
phylogenetic reconstructions'”'%2"%=33; () Prorhinotermes
was sister to Dolichorhinotermes + Glossotermes instead of sis-
ter to Heterotermitidae + Termitidae in the UCE-based phylog-
eny; and (3) Cylindrotermes was sister to Neocapritermes
instead of sister to Neocapritermes + Nasutitermitinae in the
UCE-based phylogeny. The latter two incongruencies affected
species that lie in unresolved parts of the termite tree; however,
the former incongruency requires an explanation. Cryptocercus
and Mastotermes were reconstructed as monophyletic with
bootstrap supports lower than 100%, unlike most of the
branches in TEi50B and TEi100B, pointing toward potentially
incorrectly inferred topology (Figures 2B and S1J). A sister rela-
tionship between Cryptocercus and Mastotermes is not parsi-
monious, as it would require two independent origins of eusoci-
ality or one origin and one loss. Our approach was therefore
unable to resolve nodes older than ~120 million years, possibly
because of saturation of the phylogenetic signal at this time
scale. At a shorter time scale, our TE-insertion-based phyloge-
netic reconstruction approach is comparable to the currently
most robust and data-intensive reconstructions based on
UCE- and transcriptome-based phylogenies (Figure 3).

Integrating TEs with sequence-based phylogenies

Our results show that TEs can be used as phylogenetic charac-
ters alone, which could bring new insights into the topology of
nodes ambiguously reconstructed by previous analyses. They
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Figure 4. Reconstruction of a total-evidence phylogenetic tree
Maximum likelihood phylogenetic tree of termites based on a total-evidence
approach combining TE family content, aligned scHOG DNA sequences with
the third codon position included, 13 mitochondrial protein alignments, and TE
family content in the 100-bp regions flanking UCEs.

See also Table S1.

could also be used in combination with sequence alignments,
rather than as an alternative, as a total-evidence approach
similar to phylogenetic studies that combine morphological
and molecular data, as has been done for termites.*>>*>° We re-
constructed a maximum likelihood phylogenetic tree that fol-
lowed this philosophy and was based on four types of data par-
titioned into four subsets: TE family content, aligned scHOG DNA
sequences with third codon position included, 13 mitochondrial
protein alignments, and TE family content in the 100-bp regions
flanking UCEs. The topology of our combined tree was identical
to the UCE-based phylogenetic tree of Liu et al.,?* except for the
position of Neocapritermes, which was sister to Cylindrotermes
in the combined tree, instead of sister to Nasutitermitinae in
the UCE-based tree (Figure 4). The phylogenetic position of Neo-
capritermes remains partially unresolved, as it branches in a
polytomic part of the tree with short internodes characteristic
of rapid diversification events.’®?" The sister position of the
South American Neocapritermes and Cylindrotermes inferred
from the total-evidence approach represents a new phylogenetic
hypothesis that invites future testing using morphological and
other molecular data. In summary, our results show that TEs
represent an additional source of phylogenetic characters,
which can be used to supplement sequence alignments and
generate alternative hypotheses for lineages that have been re-
sisting phylogenetic resolution.

Conclusions
Alignments of conserved genetic sequences are the primary
source of characters for phylogenetic reconstruction.’? Other

¢? CellPress

molecular characters have been used occasionally, but they
have been difficult to characterize and generally ignored.
Our results show that TE landscapes provide an additional
source of molecular characters, which can be used to recon-
struct robust phylogenies as an alternative to, or in combina-
tion with, sequence alignments. Our approach takes advan-
tage of the improvements in sequencing methods, which
have led to the generation of many genome assemblies of suf-
ficient quality for a thorough characterization of TE land-
scapes. While our TE-based phylogenies are comparable in
accuracy to state-of-the-art phylogenies reconstructed from
thousands of nuclear sequence alignments, they may be
further improved in several ways by future studies, such as
by the development of evolutionary models better adapted
to TE evolution. Overall, our study shows that eukaryotic ge-
nomes contain useful phylogenetic information in their en-
tirety, setting the stage for the development of integrative
phylogenetic analyses that combine new types of genomic
characters and alignments of conserved sequences like pro-
tein-coding genes and UCEs.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will
be fulfilled by the lead contact, Thomas Bourguignon (Thomas.bourguignon@
oist.jp).

Materials availability
This study did not generate new, unique reagents.

Data and code availability

® The genome assemblies of the 47 species used in this study have been
published in a previous study.”” They are available on GeneBank under
bioproject PRUNA1198669. The mitochondrial genomes of the 31 spe-
cies sequenced in this study are available on GeneBank under acces-
sion numbers PV938871-PV938899, PX255553, and PX260181. The
accession numbers of the 16 species sequenced in previous studies
are available on GeneBank under accession numbers provided in
Table S2.

® This paper does not report original code.

® Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

EDTA Ou et al.”® https://github.com/oushujun/EDTA

panEDTA Ou et al.** https://github.com/oushujun/EDTA
RepeatMasker Nishimura®® https://www.repeatmasker.org/

OrthoFinder Emms and Kelly®’ https://github.com/davidemms/OrthoFinder
MAFFT Katoh et al.®® https://mafft.cbrc.jp/alignment/server/index.html
PAL2NAL Suyama et al.*° https://www.bork.embl.de/pal2nal/

Fastp Chen et al.*° https://github.com/OpenGene/fastp
metaSPAdes Nurk et al.*! https://github.com/ablab/spades

MitoFinder Allio et al.*? https://github.com/RemiAllio/MitoFinder
EMBOSS Rice et al.*® https://emboss.sourceforge.net/

FASconCAT-G Kiick and Longo** https://github.com/PatrickkKueck/FASconCAT-G
IQ-TREE Minh et al.*® https:/igtree.github.io/

Phangorn Schliep*® https://klausvigo.github.io/phangorn/

R N/A https://www.r-project.org/

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used the genome assemblies of 45 termites and two cockroaches (Table S2).%2

METHOD DETAILS

Annotation of TEs

TEs were annotated in two steps. First, we annotated each genome individually using the sensitive mode of EDTA v2.2.0 with default
parameters.?® The TE annotations of all genomes were combined to create a pan-genome TE library with panEDTA run with default
settings.?* Second, we used our pan-genome TE library to reannotate each genome individually with RepeatMasker v4.1.2-p1 run
with default parameters.® We ran RepeatMasker separately rather than the version implemented in panEDTA for computational ef-
ficiency. The genome annotations obtained with RepeatMasker were filtered and curated with EDTA with default parameters. Both
intact and fragmented TEs were retained. Annotated repeats that were not TEs, including simple repeats, low complexity regions,
satellite DNA, ribosomal RNAs, small nuclear RNAs, and transfer RNAs, were removed. These analyses classified TEs populating
each genome into families.

Supermatrices for phylogenetic tree inference

We generated 16 supermatrices from the genomes of 45 termites and two cockroach species®? for phylogenetic tree reconstruction.
One supermatrix was built from the content in TE families; three supermatrices were built from alignments of single-copy orthologous
genes (scHOGs); three supermatrices were built from alignments of mitochondrial protein-coding gene sequences; eight superma-
trices were built from the TE family content in the regions flanking UCE loci; one supermatrix consisted of the other supermatrices
concatenated, including the TE family content, aligned scHOG DNA sequences with third codon position included, mitochondrial
protein alignments, and the TE family content in the 100-bp regions flanking UCEs.

The first supermatrix was built using our pan-genome TE library, which contained 37,966 TE families of 45 termites and two cock-
roach species. We converted the genomic composition in TE families of each species into a binary matrix. The presence of a family
was coded as 1 and the absence as 0.

The second, third, and fourth supermatrices were built using alignments of scHOGs. We ran OrthoFinder v.2.5.4°” with the species
tree topology and the genome annotations®® and identified 1,410 scHOGs shared by all 47 species. We aligned their protein se-
quences using MAFFT v.7.508% with the —auto option. The nuclear protein alignments were concatenated as the second superma-
trix. We also converted the 1,410 protein alignments of scHOGs into DNA alignments using PAL2NAL v.14°° and concatenated them
into a supermatrix. The third supermatrix consisted of the concatenated DNA sequences of 1,410 scHOGs with the third codon po-
sitions included. The fourth supermatrix consisted of the concatenated DNA sequences of 1,410 scHOGs without the third codon
positions.
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The fifth, sixth, and seventh supermatrices were built using the 13 protein-coding genes of mitochondrial genomes. We obtained
the mitochondrial genomes of the 47 species used herein. We used 16 previously published mitogenome sequences (Table S2). The
remaining 31 mitogenomes were assembled from the short reads.?* Briefly, raw reads were quality-trimmed using fastp v.0.20.1%°
and assembled with metaSPAdes v3.13." Mitogenomes were identified and annotated with MitoFinder v.1.4.*> The mitochondrial
genomes and their annotation are available on GenBank (Table S2). The nucleotide sequences of the 13 mitochondrial protein-coding
genes were translated into amino acids with the transeq function of EMBOSS v.6.6.0."° Protein sequences were aligned with MAFFT
and converted into codon alignments using PAL2NAL. The protein and nucleotide sequence alignments were concatenated with
FASconCAT-G_v1.04.pl.** The fifth supermatrix consisted of the concatenated protein sequences of the 13 mitochondrial pro-
tein-coding genes. The sixth and seventh supermatrices consisted of the concatenated DNA sequences of the 13 mitochondrial pro-
tein-coding genes with and without third codon positions, respectively.

Eight supermatrices were built from the TE family content in the flanking regions of the UCEs.?” Each supermatrix differed in UCE
flanking region lengths. We used eight flanking lengths: 50, 100, 200, 500, 1000, 2000, 3000, and 4000 bp. We only retained UCEs
associated with entire flanking regions in all genome assemblies. Therefore, UCEs located near the end of contigs were not consid-
ered. We extracted presence/absence data of each TE family in the flanking regions of each UCE. More precisely, we generated a
binary matrix composed of 47 rows and 37,966 columns for each UCE, with one row and one column for each of the 47 genomes and
37,966 TE families considered in this study. Presence and absence were coded as 1 and 0, respectively. Columns only composed of
1 or 0 were removed, and all remaining columns were concatenated into a supermatrix.

The last supermatrix included the four types of data concatenated in a single supermatrix. It included the TE family content, aligned
scHOG DNA sequences with third codon positions included, 13 mitochondrial protein alignments, and the TE family content in the
100-bp regions flanking UCEs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic tree inference

We inferred 26 phylogenetic trees using the 16 supermatrices with IQ-TREE v.2.3.6° with the option “-B 1000” for bootstrap.*” The
evolutionary models were selected by ModelFinder*® implemented in IQ-TREE v.2.3.6. For each of the nine TE-based supermatrices,
we built two trees using the options “—seqtype BIN” and “-seqtype MORPH” separately. For the protein alignments of nuclear and
mitochondrial genes, we selected the best amino acid substitution models with the options “~-msub nuclear” and “—-msub mitochon-
drial,” respectively. For the four DNA supermatrices, we used the option “—msub GTR.” The last supermatrix was partitioned into four
subsets: one for the TE family content, one for aligned scHOG DNA sequences with third codon positions included, one for 13 mito-
chondrial protein alignments, and one for the TE family content in the 100-bp regions flanking UCEs. We assigned to each partition
the corresponding models selected for phylogenetic analyses run with a single type of data. The options used for each IQ-TREE run,
and the phylogenetic tree in Newick format, are summarized in Table S1. We quantified the topological differences between the
phylogenetic tree of Liu et al.?” based on the alignment of 27,610 UCEs and all 26 trees except the last tree, composed of four par-
titions, using the normalized Robinson-Foulds distance computed with the RF.dist function implemented in the R package phan-
gorn.“® We also quantified the topological differences between all 26 trees except the last tree, composed of four partitions, using
the normalized Robinson-Foulds distance (Figure S2).
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